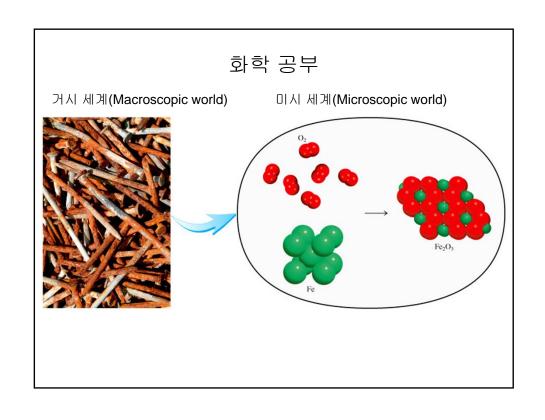

제1장. 화학:변화에 대한 연구

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

화학: 21세기를 위한 과학

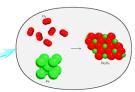
- 건강과 의학
 - 위생 설비 체계
 - ㅇ 마취법에 의한 외과 수술
 - ㅇ 백신과 항생제
 - ㅇ 유전자 치료
- 에너지와 환경
 - 화석 연료
 - 태양 에너지
 - 핵 에너지


화학: 21세기를 위한 과학

- 신물질과 기술
 - •고분자, 세라믹, 액정
 - 상온 초전도체?
 - 분자 컴퓨터?

- 식량과 농업
 - 유전자 조작 농작물
 - 천연 살충제
 - 선택적 비료

과학적 방법(scientific method): 연구에 의한 체계적 접근



- 가설(hypothesis): 관측한 자료에 대한 임시적 설명 가능한 내용 🛮
- 법칙(*law*): 동일한 조건에서 항상 일정하게 일어나는 현상들의 관계를 함축된 말이나 수학적 표현으로 나타낸 것 힘 = 질량 x 가속도

• 이론(theory) : 모든 실험적 사실들과 그들에 바탕을 둔 법칙들을 설명할 수 있는 총괄적 원리

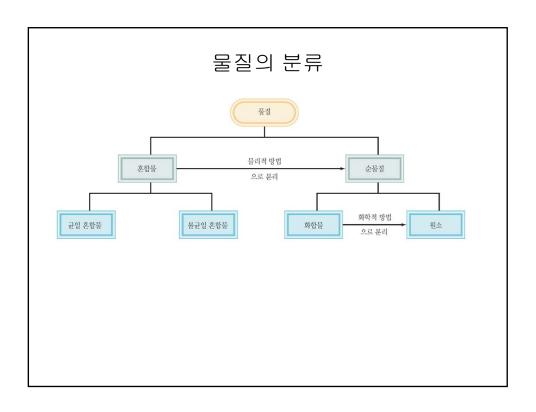
원자론

화학(*Chemistry*): 물질과 그들의 변화에 연구하는 학문

물질(*matter*): 공간을 차지하며 질량을 가진 모든 것

물질 = 혼합물 + 순물질

순물질(*substance*): 일정하고 균일한 조성과 독특한 성질을 갖는 물질


액체 질소

금괴

실리콘 결정

혼합물(mixture) : 둘 이상의 순물질이 각각의 고유한 성질을 유지하면서 서로 섞여 있는 것

- 1. 균일 혼합물(Homogenous mixture): 혼합물의 조성이 일정
- 2. 불균일 혼합물(Heterogeneous mixture): 혼합물의 조성이 일정하지 않음

혼합물은 물리적 방법들을 이용해 순수한 화합물로 분리할 수 있다.

원소(*element*): 화학적 방법으로 더 간단한 순물질로 분리할 수 없는 물질

- 117개 원소 확인
 - 82개 원소만 지구상 자연계에 존재, 금, 알루미늄, 납, 산소, 탄소, 황
 - 35개 원소는 연구용으로 만들어짐; 테크네튬(Tc), 아메리슘(Am)

화합물(*compound*): 둘 이상의 원소들이 화학적으로 항상 일정한 비율로 결합한 원자들로 이루어진 순물질

• 화합물은 화학적 방법에 의해서만 순물질로 분리

원소(element) vs 원자(atom)?

10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **TABLE 1.1** Some Common Elements and Their Symbols **Symbol** Name **Symbol** Name Symbol Name F Al Aluminum Fluorine Oxygen O Arsenic As Gold Au Phosphorus Barium Hydrogen Platinum Pt Ba Η Iodine Bismuth Bi Ι Potassium K Iron Bromine Br Fe Silicon Si Ca Lead Pb Silver Calcium Ag Carbon C Magnesium Mg Sodium Na Chlorine Cl Manganese MnSulfur S Chromium Cr Mercury Hg Tin Sn Cobalt Co Nickel Ni Tungsten W Cu Nitrogen Zinc Zn Copper

물질의 세 가지 상태

물리적변화 or not?

변화의 형태

물리적 변화(physical change): 순물질의 조성이나 본질은 변화하지 않음;

얼음이 녹는 것, 물에 설탕이 녹는 것

화학적 변화(chemical change): 포함된 순물질의 조성과 본질이 변화:

공기 중에서 수소의 연소로 물 형성

모든 물질의 측정 가능한 성질: 크기 성질과 세기 성질로 구분

• 크기 성질(*extensive property*): 얼마만큼의 물질의 양이 고려되었느냐에 의해 결정: 질량, 길이, 부피

• 세기 성질(*intensive property*) : 물질의 양에는 상관 없는 값: 밀도, 온도, 색

물리적 성질 vs 화학적 성질?

측정

물질(*matter*) : 공간과 질량(*mass*)을 가진 모든 것

질량(*mass*) : 물질의 양의 측정값

SI 단위 : *kilogram* (kg)

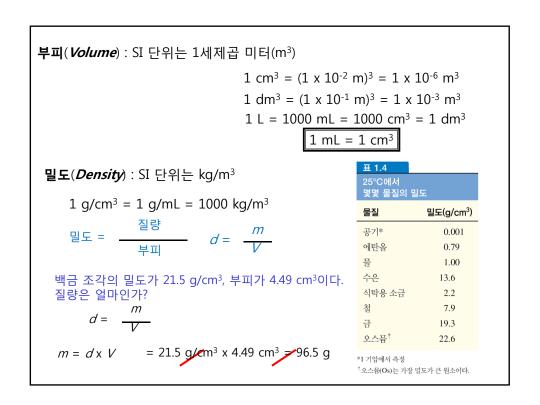
 $1 \text{ kg} = 1000 \text{ g} = 1 \text{ x } 10^3 \text{ g}$

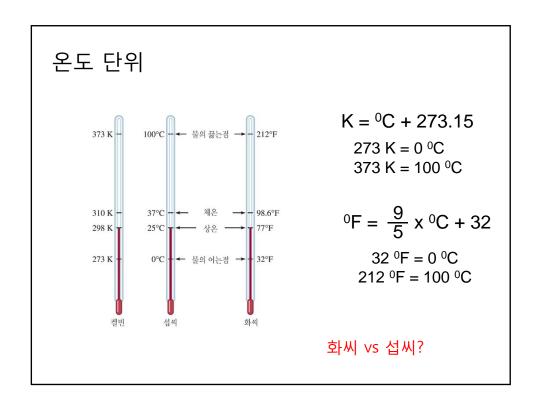
무게(weight) : 물체에 중력이 가하는 힘

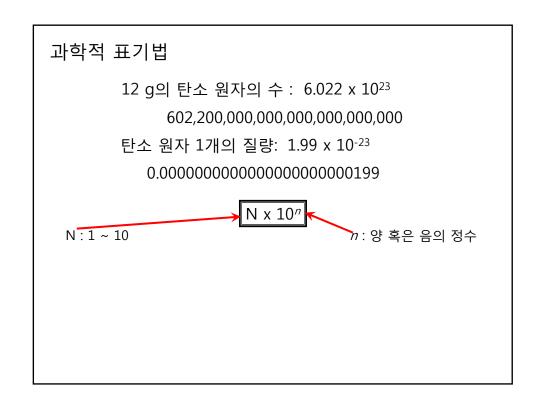
무게 = 중력 x 질량, 지구, c = 1.0 달, $c \sim 0.1$

1 kg 물체의 무게 1 kg 지구 0.1 kg 달

11


국제 단위계(International System of Units, SI)


표 1.2 SI 기본 단위		
기본량	단위 이름	기호
길이(Length)	미론](meter)	m
질량(Mass)	킬로그램(kilogram)	kg
시간(Time)	초(second)	S
전류(Electrical current)	아페어(ampere)	A
온도(Temperature)	켈빈(kelvin)	K
물질의 양(Amont of substance)	물(mole)	mol
빛의 세기(Luminous intensity)	칸델라(candela)	cd



16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **TABLE 1.2** SI Base Units **Base Quantity** Name of Unit **Symbol** Length meter m Mass kilogram kg Time second S Electrical current ampere A Temperature kelvin K Amount of substance mole mol Luminous intensity candela cd

TABLE 1.3 Prefixes Used with SI Units					
Prefix	Symbol	Meaning	Example		
tera-	T	1,000,000,000,000, or 10 ¹²	1 terameter (Tm) = 1×10^{12} m		
giga-	G	1,000,000,000, or 10 ⁹	1 gigameter (Gm) = 1×10^9 m		
mega-	M	$1,000,000, \text{ or } 10^6$	1 megameter (Mm) = 1×10^6 m		
kilo-	k	$1,000, \text{ or } 10^3$	1 kilometer (km) = 1×10^3 m		
deci-	d	$1/10$, or 10^{-1}	1 decimeter (dm) = 0.1 m		
centi-	c	$1/100$, or 10^{-2}	1 centimeter (cm) = 0.01 m		
milli-	m	$1/1,000$, or 10^{-3}	1 millimeter (mm) = 0.001 m		
micro-	μ	$1/1,000,000, \text{ or } 10^{-6}$	1 micrometer (μ m) = 1 × 10 ⁻⁶ m		
nano-	n	$1/1,000,000,000$, or 10^{-9}	1 nanometer (nm) = 1×10^{-9} m		
pico-	p	$1/1,000,000,000,000$, or 10^{-12}	1 picometer (pm) = 1×10^{-12} m		

과학적 표기법

568.762

0.00000772

← 소수점이 왼쪽으로 이동

→ 소수점이 오른쪽으로 이동

n > 0

n < 0

 $568.762 = 5.68762 \times 10^{2}$

 $0.00000772 = 7.72 \times 10^{-6}$

덧셈과 뺄셈

- 1. 두 수가 같은 지수 *n*을 갖도록 표기
- 2. N_1 과 N_2 를 더하거나 뺀다. $4.31 \times 10^4 + 0.39 \times 10^4 =$
- 3. 지수 *n*이 같은지 확인

 $4.31 \times 10^4 + 3.9 \times 10^3 =$

4.70 x 104

과학적 표기법

곱셈

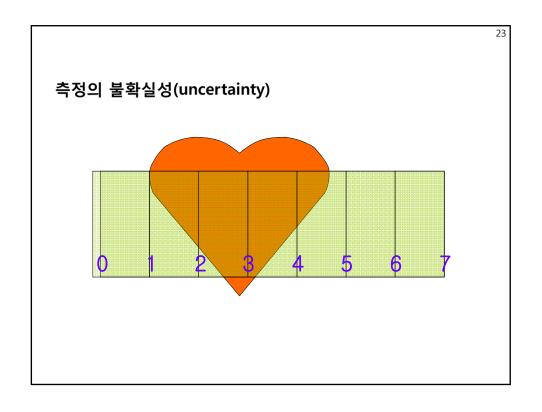
- 1. N₁과 N₂를 곱한다.
- 2. 지수 n_1 과and n_2 를 더한다.

 $(4.0 \times 10^{-5}) \times (7.0 \times 10^{3}) =$

 $(4.0 \times 7.0) \times (10^{-5+3}) =$

 $28 \times 10^{-2} =$

2.8 x 10⁻¹


나눗셈

- 1. N₁과 N₂를 나눈다.
- 2. 지수 n_1 과 n_2 를 뺀다.

 $8.5 \times 10^4 \div 5.0 \times 10^9 =$

 $(8.5 \div 5.0) \times 10^{4-9} =$

1.7 x 10⁻⁵

측정의 불확실성(uncertainty)

유효 숫자

- 측정의 불학실성은 항상 확실한 자리수와 불확실한 첫 번째 자리수(추정한 숫자)를 기록하여 나타낸다.
- 이들 숫자를 측정의 유효숫자 (significant figure)라고 한다.
 - 0이 아닌 모든 숫자는 유효 1.234 kg 4개 유효 숫자
 - 0이 아닌 숫자 사이의 0은 유효 606 m 3개 유효 숫자
 - 0이 아닌 처음 숫자 왼쪽에 있는 0은 유효하지 않음
 0.08 L
 1개 유효 숫자
 - 1보다 크다면 소수점의 오른쪽에 쓰인 모든 0은 유효 2.0 mg 2개 유효 숫자
 - 1보다 작다면 끝에 있는 0과 0이 아닌 수 사이의 0만 유효 0.00420 g 3개 유효 숫자

24

- □ 유효숫자는 측정에서의 불확정성을 자동적으로 나타냄.
- □ 마지막 숫자의 불확실성은 다른 언급이 없는 한 보통 ±1 로 가정.
 - (예: 1.86 kg은 1.86±0.01 kg을 뜻함)

25 mL는 부피가 24 mL와 26 mL의 유효 숫자를 사용하는 이유? 사이에 있음을 나타내고, 25 mL 와 25.00 mL 의 차이는? 25.00 mL 의 차이는? 25.00 mL는 부피가 24.99 mL와 25.01 mL의 사이에 있음을 나타낸다.

유효 숫자 계산

2개 유효 숫자 24 mL

4개 유효 숫자 3001 g

 0.0320 m^3 3개 유효 숫자

6.4 x 10⁴ molecules 2개 유효 숫자

2개 유효 숫자 560 kg

유효 숫자

<u>덧셈과</u> 뺄셈

소수점 오른쪽 유효 숫자의 개수는 덧셈이나 뺄셈에 사용한 원래수 중에서 가장 왼쪽에 위치한 유효 숫자의 자리로 결정

유효 숫자

곱셈과 나눗셈

최종 곱과 몫의 유효 숫자의 개수는 자장 적은 원래의 개수에 의해 결정

유효 숫자

정확한 수(Exact Numbers), 완전수

셀 수 있는 정확한 수는 유효숫자의 규칙을 적용하지 않음 정의에 의해서 정해진 수→ 완전수→ 무한대의 유효숫자

측정된 3개의 길이의 평균값은? 6.64, 6.68, 6.70

$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333 = 6.67$$

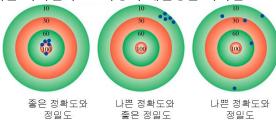
3은 *exact number*

반올림 규칙

반올림 규칙

- 1. 여러 단계의 계산을 연속적으로 할 때는 마지막 결과를 <mark>얻을 때</mark> 까지 모든 숫자를 가져 가 유효 숫자의 개수가 맞도록 반올림을 한다.
- 2. 만일 반올림하는 숫자가
 - a. 5보다 작으면 버린다. 예를 들어, 1.33을 반올림하면 1.3이 된다.
 - b. 5보다 크면 그 앞자리 수에 1을 더한다. 1.36을 반올림하면 1.4가 된다.

4.348


유효 숫자 두 개를 만들기 위해서는 이 숫자만 고려하여라. (반올림 할 때는 마지막 유효 숫자의 첫 번째 오른쪽 숫자만을 사용)

이 책의 예제에서는 문제를 푸는 각 단계에서 유효 숫자의 개수를 보여 주기 위해 규칙 1을 따르지 않는다. 그러나 가장 좋은 방법은 규칙 1을 따르는 것.

0

정밀도와 정확도

- 측정의 신뢰도를 나타내는 방법?
- 정확도(accuracy): 측정값이 참값에 얼마나 근접하고 있는가를 나타낸다.
- 정밀도(precision): 같은 양을 여러 번 측정하였을때 이들 측정값이 얼마나 서로 비슷한지를 나타낸다. → 측정의 재현성을 나타냄.

오차 (Error)

- 우발 오차 (random error), 또는 불가측 오차(indeterminate error)]: 측정값이 크거나 작게 나타날 확률이 같은 오차이다.
- 계통 오차 (systemetic error), 또는 가측 오차(determinate error)]: 계통오차는 항상 같은 방향으로 일어난다. 즉, 항상 크거나 항상 작다.

차원 해석을 이용한 문제 풀이

- 1. 단위 환산 인자의 결정
- 2. 계산 수행
- 3. 원하는 단위를 제외한 모든 단위가 지원지면 계산은 정확히 수행됨

1.63 L는 몇 mL인가?

단위 환산 1 L = 1000 mL

1.63 L/x
$$\frac{1000 \text{ mL}}{1 \text{ L/}} = 1630 \text{ mL}$$

1

대기 중의 음속은 343 m/s 이다. 이 속도는 miles/hour로 얼마인가?

단위 환산

미터를 마일로

초를 시간으로

$$343 \frac{\cancel{m}}{\cancel{s}} \times \frac{1 \text{ mi}}{1609 \cancel{m}} \times \frac{60 \cancel{s}}{1 \cancel{m}\cancel{m}} \times \frac{60 \cancel{m}\cancel{m}}{1 \text{ hour}} = 767 \frac{\text{mi}}{\text{hour}}$$

사실과 개념에 대한 요약

- 1. 화학 연구는 관측, 표현, 해석의 세 가지 기본 단계들을 수반한다. 관측은 거시적인 세계에서의 측정을 뜻한다. 표현은 관찰 결과 전달을 위한 약식 표시화와 식의 사용과 관련이 있다. 해석은 미시적인 세계에 속하는 원자와 분자들에 기초를 두고 있다.
- 과학적 방법은 관찰과 측정을 통한 정보의 수집과 함께 시작하는 연구에서 체계적인 접근법이다. 이 과정에서 가설, 법칙, 이론이 제안되고 시험된다.
- 3. 화학자들은 물질들과 이것들의 변화를 연구한다. 순물질은 그 고유 특성에서 변화가 일어나지 않는 물리적 성질과, 고유의 특성에서 변화가 일어나는 화학적 성질을 갖는다. 혼합물은 균일하든지 불균일하든지 물리적 방법에 의해 순수한 성분으로 나눌 수 있다.

- 4. 화학에서 가장 간단한 순물질은 원소이다. 화합물은 다른 원소의 원자들이 결합함으로써 생성된다.
- 5. 원칙적으로 모든 순물질들은 고체, 액체, 기체의 세 가지 상태로 존재한다. 이들 상태 간의 상호 변환은 온도 변화에 의해 가능하다.
- 6. SI 단위는 화학을 포함한 모든 과학에서 물리적인 양을 표현하는 데 사용한다.
- 7. 과학적인 표기법으로 나타내는 숫자들은 N10n형으로 나타내는데, 여기서 N은 10 미만의 자연수이며, n은 양 혹은 음의 정수이다. 과학적인 표기는 매우 크거나 매우 작은 양을 다루는 데 도움을 준다.

주요 용어

가설	물성	원소	질량
거시 성질	물질	유효 숫자	켈빈
과학적 방법	미시 성질	이론	크기 성질
국제 단위 체계(SI)	법칙	정량적	혼합물
균일 혼합물	부피	정밀도	화학적
무게	세기 성질	정확도	
물리적 성질	순물질	질도	