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Abstract

This paper presents a theoretical model for predicting the collection performance of an
electrostatic precipitator (ESP) for polydisperse particles. The particle size distribution of
polydisperse particles was represented by a lognormal function, and then the statistical method
of moments was employed to obtain a set of the "rst three moment equations. The continuous
evolution of the particle size distribution in an ESP is taken into account with the "rst three
moment equations. The employed model was validated by comparing its predictions with
existing experimental data and other theoretical prediction models. The e!ects of the particle
size distribution on the ESP performance were examined. The results indicated that both
overall mass and number e$ciencies were higher for aerosols with a larger geometric mean
diameter and a lower geometric standard deviation. ( 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Electrostatic precipitators (ESPs) are one of the most common particulate control
devices used to control #y ash emissions from utility boilers, incinerators and many
industrial processes. They have many advantages of operating in a wide range of gas
temperature and achieving high particle collection e$ciency compared with mechan-
ical devices such as cyclones and bag "lters. Theoretical ESP performance models for
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monodisperse particles were suggested by many researchers such as Deutsch [1],
Cooperman [2], Leonard et al. [3] and Zhibin and Guoquan [4].

The "rst mathematical model of ESP performance is the Deutsch}Anderson model
[1]. Although the Deutsch}Anderson model has been widely used for the design of
ESPs, the assumption of an in"nite transverse turbulent dispersion was overly
restrictive to provide accurate prediction. Other researchers tried to explain particle
di!usion process as well as electrostatic force in the ESPs. Speci"cally, Cooperman
[2] considered the particle re-entrainment and the longitudinal turbulent mixing
e!ects, Leonard et al. [3] the "nite turbulent di!usion coe$cient, and Zhibin and
Guoquan [4] the non-uniform air velocity pro"le and the turbulent mixing coe$cient.
Although the polydisperse nature of particles can be accounted for by the integration
of grade e$ciency, the continuous change of particle size distribution along the ESP
may not be easily considered with the above theoretical models. Bai et al. [5]
developed a moment model approximating the particle size distribution by a lognor-
mal function through the ESP. The Bai et al. [5] model described continuous
evolution of the particle size distribution along the ESP for predicting the mass and
number e$ciencies. With minimal computing, this model gives information on aver-
age properties of the particle size distribution such as total particle number concentra-
tion, average particle size and polydispersity. This model has proved useful in
predicting ESP performance for collecting polydisperse particles. However, Bai et al.
[5] considered #ow convection and electrostatic force without particle di!usion
process into the collection plates. Since the turbulent di!usion process is one of the
main mechanisms which dominate the behavior of aerosol particles in ESP [2], it
should be involved to provide more accurate prediction of an ESP performance.

Therefore, the goal of this paper is to present a modi"ed model for considering
simultaneously the convection force, the electrostatic force, and the di!usion to
predict the wire}plate ESP performance for collecting polydisperse particles. The
performance of the present model is veri"ed by comparing its predictions with other
theoretical models and with existing experimental data. The continuous evolution of
particle size distribution along a wire}plate ESP and its e!ects on the ESP perfor-
mance are also studied and quantitatively determined.

2. Theoretical model development

2.1. Basic assumptions

The following major assumptions are made in developing the proposed model to
study the performance of an ESP:

1. The system is in a steady-state operating condition.
2. Electrical resistivity of particles is not considered in this model.
3. Non-ideal e!ects such as leakage and rapping re-entrainment are neglected.
4. The #ow is a plug #ow with uniform velocity corresponding to the mean velocity of

a fully developed turbulent #ow.

178 S.H. Kim et al. / Journal of Electrostatics 50 (2001) 177}190



5. The particle size distribution is preserved as a lognormal function throughout the
ESP, although the three parameters, the total number, the geometric standard
deviation and the mean radius are allowed to vary.

6. The mobility of charged particle is constant in every small increment of an ESP.
7. The #uctuation of electric force and the particle space-charge e!ect are neglected.

2.2. Electric xeld equation

The following governing equations and numerical method of McDonald et al. [6]
are applied to obtain electric "eld strength in the presence of the space charge as
follows:
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plate without particles, and b is the mobility of charged particles.

2.3. Mass balance equation

The schematic diagram of a wire}plate ESP is shown in Fig. 1. The simplest mass
balance equation containing all of the fundamental forces is written as
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Fig. 1. Schematic diagram of a wire}plate electrostatic precipitator.

2.4. Diwusion coezcients

Careful examination of the derivations shows that approximation of the longitudi-
nal and the transverse di!usion coe$cients was used to obtain a simple e$ciency
formula as the following three cases:

Case I: D
1
"0 and D

2
"R (Deutsch model [1]). Bai et al. [5] assumed that the

longitudinal mixing coe$cient (D
1
) is taken as zero and the transverse mixing

coe$cient (D
2
) as in"nity for improving the prediction of Deutsch}Anderson model

[1]. Thus, the inlet particle distribution was assumed to be uniform. It is assumed that
there is no particle di!usion process into the collection plate.

Case II: D
1
<<

%
¸/2 and D

2
"0 (Cooperman model [2]). This case says that for very

high longitudinal mixing, the concentration gradient sweeps particles out the outlet so
fast that they do not have time to come near the plate. Though this case gives some
clue about very high mixing conditions, it is too extreme to be used for actual design.
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(50 cm2 s~1 (Leonard et al. model [3]). The

present model is based on this case for improving the predictions of the Leonard et al.
model [3]. Since the migration velocity for coarse particles, e.g. '10lm, is an order
of magnitude smaller than the gas velocity, <2
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is satis"ed. With this

assumption, Cooperman [2] suggested the uni"ed e$ciency theory from Eq. (1) as
follows:
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As noted, D
1

is absent and only D
2

plays a role. This implies that longitudinal mixing
is dominated by gas velocity, but that transverse mixing has a role to play in
enhancing the build-up of particles near the plate due to migration velocity [7]. The
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concentration of particles along the ESP is obtained by di!erentiating Eq. (5):

dN(r)

dx
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N(r). (6)

In order to evaluate the particle di!usivity, the #ow is assumed to be a fully developed
turbulent channel #ow. The related physical quantities are speci"ed below [8,9]:
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where f is the friction factor, k the gas viscosity, Re the Reynolds number
(";
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di!usivity, D
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the turbulent di!usivity, D
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the Brownian di!usivity and C
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the
Cunningham slip correction factor.

In turbulent #ow, the order of Brownian di!usivity is much smaller than that of
turbulent di!usivity. Thus, the particle di!usion coe$cient was set to be equal to the
turbulent particle di!usivity for simpli"ed calculation. Once the migration velocity of
particles is determined, the evolution of the particle size distribution function, N(r),
along an ESP can be solved using Eq. (6). The migration velocity of a particle of radius
r near the collecting plate is given by Bai et al. [5]:
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where q is the particle charge, E
#

the electric "eld strength at the collecting plate
surface which is obtained from Eqs. (1) and (2) [6], and C

#
the Cunningham slip

correction factor.

2.5. Particle charge equation

Particle charge is a function of particle size, and can be described by Cochet's
charge equation:
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where e
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is the permittivity of free space, E the local electric "eld strength, j
*
the ionic

mean free path, and i the dielectric constant of particles.
Although Cochet's equation is simple compared to other particle charge theories, it

is not an integrable form. Therefore, Cochet's equation is converted into an integrable
form by the assumption of the Bai et al. [5]:
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where q
1
"4pj2

*
e
0
E and q

2
"4[1#2(i!1)/(i#2)]ne

0
E, for the ionic mean free

path less than particle radius.

2.6. Cunningham slip correction factor

Similarly, the Cunningham slip correction factor can also be converted into an
integrable form by using the approximation proposed by Bai and Biswas [10]:

C
#
"CH#3.314j/(2r), (11)

where j is the gas mean free path, C*"0.56 for j/(2r)'1 and C*"1 for j/(2r))1.

2.7. Migration velocity

The local electric "eld strength (E) is here assumed to be equal to the average
electric "eld strength (E

!7
) in a single-stage ESP [5,11]. Substituting Eqs. (10) and (11)

into Eq. (8), the migration velocity is written as
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2.8. Moment method

The use of moments has the advantage of simplicity in evaluating the continuous
evolution of polydisperse particles. The kth moment of a particle size distribution is

M
k
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=

0

rkN(r) dr. (13)

While the size distribution function, N(r), for lognormally distributed particles is
de"ned as
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where N
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is the total particle number concentration, r
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radius and p
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is the geometric standard deviation. Values of r
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expressed in terms of the "rst three moments of the distribution as [12]
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The "rst three moments of the distribution are su$cient to describe the behavior of
the size distribution of lognormally preserving particles and the kth moment of the
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distribution can be written in terms of M
0
, r

'
and p

'
as
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Substituting Eq. (12) into Eq. (6), multiplying both sides by rk and integrating over the
entire particle size range, the continuous evolution of the "rst three moments of the
distribution along the ESP are given by
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The associated initial conditions for Eqs. (18)}(20) are

M
0
"N

0
,

M
1
"N

0
r
'0

exp(0.5 ln2p
'0

),

M
2
"N

0
r2
'0

exp(2 ln2p
'0

) at x"0. (21)

Eqs. (18)}(20), along with the initial conditions, constitute a set of coupled ordinary
di!erential equations (ODEs) that describe the continuous evolution of the "rst three
moments of the distribution along the ESP. These ODEs are then solved by the
fourth-order Runge}Kutta method.

3. Results and discussion

The predictions were made based on the parameter values in Table 1 except for the
purpose of comparison with the experimental data. The conservation of the lognor-
mal particle size distribution in an ESP was investigated. Fig. 2 shows the evolution of
the particle size distribution along an ESP. The inlet particle geometric mean radius
(r
'0

) and the geometric standard deviation (p
'0

) are 1lm and 2.0, respectively. SCA
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Table 1
Parameters used in the present theoretical model of an ESP performance

Parameters Values Unit

Particle density 2270 kgm~3

E
!7

5 kV cm~1

U
!7

1 m s~1

W 0.4 m
k 2.4]10~5 kgm~1

e
0

8.85]10~12 Fm~1

j 0.065 lm
j
*

0.1 lm
i 5

Fig. 2. Evolution of particle size distribution obtained by computing the grade e$ciency of each size (inlet
particle geometric mean radius and GSD were 1lm and 2.0).

denotes the speci"c collection surface de"ned as the ratio of the total collection area to
the total gas volume #ow rate. That is to say, SCA"2x/;

!7
=, where x is longitudi-

nal distance from the inlet, ;
!7

the average #ow velocity, and= the width between
two collection plates. Therefore, the given SCA number is showing the precipitator
length we considered. As can be seen, when starting with a lognormal inlet particle size
distribution (SCA"0), the distribution shifts continuously to the "ner particles as
SCA becomes larger. Overall size range of particles is collected e$ciently by
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Fig. 3. Predicted overall number e$ciencies as a function of particle radius with di!erent p
'0

values (SCA
and inlet particle geometric mean radius were 25 sm~1 and 1 lm).

electrostatic force and particle di!usion simultaneously. As a result, the particle size
distribution remains in a lognormal form along an ESP without signi"cant deviation.
Fig. 3 shows the predicted overall number e$ciencies as a function of particle radius
with di!erent p

'0
values. The SCA and the inlet particle geometric mean radius

were 25 sm~1 and 1lm, respectively. As can be seen, the e!ects of particle di!usion
process and electrostatic force are very signi"cant for inlet particle geometric mean
radius in the range of 0.01}1lm. It is also seen that variations of the overall number
e$ciency of the Bai et al. [5] model with respect to particle polydispersity are similar
to those obtained from the present model. For the typical range of geometric particle
mean radius (0.05}5lm) encountered in many industrial combustion processes, par-
ticle deposition will be enhanced by the predictions of the present model without
considering the space-charge e!ect. Fig. 4(a) shows the overall number e$ciencies as
a function of SCAs with di!erent p

'0
values. For SCAs less than 3 sm~1, overall

number e$ciency increases with increasing particle polydispersity. However, the
opposite trend is observed for SCAs larger than 3 sm~1. This is because the inlet
particles with a wide spread (e.g., p

'0
"2.0) tend to lose the coarse particles to the

collector surface at a faster rate, which may lead to high collection e$ciency at the
early stages of an ESP. But as SCA increases, the uncollected particles are undergoing
charging di$culty. Therefore, the particle collection rate slows down, and the overall
number e$ciency may become lower than that for inlet particles with narrow spread.
If the geometric standard deviation is large, there are "ner and coarser particles. The
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Fig. 4. Evolution of overall number e$ciency, r
'

and p
'

as a function of SCA for inlet particle geometric
mean radius of 1lm with di!erent p

'0
values.

coarse particles and extremely "ne particles are easily precipitated, while normally
"ne particles are not. Eventually, the inlet particles with narrow spread have a high
overall number e$ciency at large SCA values, no matter whether the inlet particle
geometric mean diameter (GMD

0
) is large or small. Fig. 4(b) and (c) show the

evolutions of r
'
and p

'
as a function of SCA for inlet particles with di!erent p

'0
values.

Both r
'
and p

'
drop quickly as particles enter into an ESP, and then the rate of change

of r
'

and p
'

slows down. It is because both very large and very small particles are
captured almost immediately after entering an ESP. The evolutions of r

'
and p

'
of

present model drop more quickly than those of Bai et al. model [5], because particle
deposition is enhanced by particle di!usion process [7]. Fig. 5 shows the evolution of
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Fig. 5. Evolution of overall number e$ciency, r
'

and p
'

as a function of SCA predicted by present model
for inlet particle geometric mean radius of 0.5 and 5 lm with di!erent p

'0
values.

overall number e$ciency, r
'
, and p

'
as a function of SCA predicted by the present

model for di!erent particle geometric mean radius of 0.5 and 5lm with di!erent
p
'0

values. As can be seen, the overall number e$ciencies are higher for inlet particles
with a larger geometric mean diameter and a lower geometric standard deviation at
large SCAs. Fig. 6 shows the measured and predicted results on the change of mass
e$ciencies at varying conditions of air velocity against incremental precipitator
length. Symbols represent the measured data by Salcedo and Munz [13] while the
lines represent the predicted results of the present theoretical model. The experimental
conditions are summarized as follows: the electrostatic precipitator is of the
wire}plate geometry with a plate-to-plate spacing of 16.2 cm, a height of 38 cm and
a length of 253 cm. Discharge electrodes are placed 15.2 cm apart. Radius of the

S.H. Kim et al. / Journal of Electrostatics 50 (2001) 177}190 187



Fig. 6. Comparison of overall mass e$ciency predicted by present model with published experimental data
[13] (applied voltage was 38kV).

corona wire is 0.06 cm. The applied voltages are 30 and 38 kV that provide the average
values of current density at the collecting plate of 3.87]10~4 and 12.8]10~4 Am~2

and the average electric "eld strength of 2.12 and 2.68 kVcm~1, respectively [11].
The experimental dust was commercial MgO particles with approximately spherical
shape and the particle size distribution of MgO is well described by a lognormal
function. The MgO particles have the following characteristics: the density is
3600kgm~3, the electrical resistivity is 2]108) m, the dielectric constant is 3.4, the
initial particle geometric mean diameter (GMD

0
) is 1.5lm and the initial geometric

standard deviation (GSD
0
) is 1.76. It is seen that experimental data are in good

agreement with the predicted results at the applied voltage of 38kV. Fig. 7 shows the
comparison of experimental results with theoretical predictions at applied voltages of
30 and 38kV. As can be seen, the present model provides a better prediction of the
measured mass e$ciency than that given by the other theoretical models. The
measured mass e$ciencies are signi"cantly under-predicted by the Deutsch}Ander-
son model [1]. The Leonard et al. [3] and Zhibin and Guoquan [4] models calculated
the overall mass e$ciency by computing the grade e$ciency over the entire particle
size range and then integrating the grade e$ciency to obtain the overall mass
e$ciency. Leonard et al. [3] and Zhibin and Guoquan [4] models over-predict the
experimental data over all incremental precipitator length. The overall mass e$cien-
cies predicted by the Bai et al. [5] and the present models remarkably improve the
predicted results of Deutsch}Anderson [1] and Leonard et al. [3] models indicating
that the in#uence of continuous change of particle size distribution may play an
important role in the prediction of ESP performance. The predictions of the present
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Fig. 7. Comparison between predicted mass e$ciencies from other theoretical models and experimental
data at di!erent applied voltages (a) <

8
"38 kV, ;

!7
"5m s~1, (b) <

8
"30 kV,;

!7
"5ms~1. (1) Zhibin

and Guoquan [4], (2) Leonard et al. [3], (3) present model, (4) Bai et al. [5]; (5) Deutsch [1] and published
experimental data [13].

model have better agreement with experimental results at a given applied voltage
distribution.

4. Conclusions

A modi"ed moment}lognormal model is developed to predict the continuous
change of particle size distribution for considering #ow convection, electrostatic force
and particle di!usion process in a wire}plate ESP. The present model provides
a better prediction of the experimental data of Salcedo and Munz [13] than that
predicted by other theoretical prediction models including Deutsch}Anderson [1],
Leonard et al. [3], Zhibin and Guoquan [4], and Bai et al. [5] models. Evolution of
particle size distribution along the ESP was investigated by utilizing lognormal
particle size distribution. The e!ects of particle size distribution of r

'
and p

'
on the

ESP performance were examined and quantitatively determined. The advantages of
the present model lie in the fact that it considers the continuous change of the particle
size distribution along an ESP and predicts both the overall mass and number
e$ciencies of polydisperse particles without computing the grade e$ciency of each
size regime. However, it must be recognized that the predictions of present model are
limited to the ESPs designed and operated under the condition of low electro- and
hydro-dynamic #ow e!ects. More comprehensive data are needed for use in the
validation of the present model before its practical application.
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