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Summary of on-going researches: what & howSummary of on going researches: what & how

• One step continuous synthesis
1

Material 
Synthesis

• de-NOx & de-SOx catalysts

• Catalytic regneration of DPF

• Sulfur effect on slagging

• One-step continuous synthesis

• Flame, Aerosol-gel, Spray pyrolysis

• Under control of microstructure,   

size & composition
ENVIROMENT :
CATALYSTS

POWER PLANT
HYDROGEN

ENERGY : 
PEMFC
DCFC

THERMITES

gg g

•Thermochemical cycle for H2
p

• Pt/C & PtRu/C Inks

• Wet-surface electrode

• Energetic combustion

3

Online & Offline

AEROSOL‐BASED
APPLICATIONS

2

N i l Online & Offline 
Characterization

INSTRUMENTATION :
SPMS

Numerical
Analysis

• CFD : Particle-laden flow

• CFD : Atomization

MC ti & i t t

• Single particle mass spectro.

• T-jump mass spectrometry
T‐JUMP MS• MC : aggregation & microstructure

• LB : heterogenueous multi-component 

structure

T jump mass spectrometry

• Insitu thermal analyser (hot stage)

• Physicochemical & electrochemical
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1. Energy 1) Pt catalyzed fuel electrode of PEMFC1. Energy

 Key factors for commercialization

1) Pt catalyzed fuel electrode of PEMFC

- long-term reliability
- a minimal use of Pt

 Potential Solutions Potential Solutions
- make smaller Pt particles 
- enhance Pt surface dispersion

d l t ff ti th d- develop more cost-effective method
- find less-expensive catalysts (Ru, Co, Y)

e -
H2

e -
e -

e -

O2B
ip

o
la

r P
la

te

A
n

o
d

e
 

E
le

ct
ro

ly
te

C
a

th
o

d
e

 

B
ip

o
la

r P
la

teH+

H+

H+

Page  3
BRL ON DCFC

O2

1. Energy 1) Pt catalyzed fuel electrode of PEMFC1. Energy 1) Pt catalyzed fuel electrode of PEMFC
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1. Energy 1) Pt catalyzed fuel electrode of PEMFC1. Energy 1) Pt catalyzed fuel electrode of PEMFC
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0 0.2 0.4 0.6 0.8 1 1.2

Commercial

E / V (vs RHE)

CO-stripping
Synthesis 72.94 0.604V

Commercial 65.67 0.641V

1. Energy 2) Basic Research Lab on DCFC1. Energy 2) Basic Research Lab on DCFC

Anode : C + 2CO3
2- → 3CO2 + 4e-

C th d O 2CO 4 2CO 2Cathode : O2 + 2CO2 + 4e- → 2CO3
2-

Net reaction : C + O2 → CO2

• no need of CO2 separationno need of CO2 separation

• Highest theoretical electrochemical efficiency

• easy retrofitting to MCFC or SOFC

till i id d l i t• still in an idea-developing stage

• suffer from limitted triple-phase interfaces

• unknown thermal stabilities of various coals
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1. Energy 2) Basic Research Lab on DCFC1. Energy 2) Basic Research Lab on DCFC

연료공급장치기술

애노드 가공기술

• 주형을 이용한 다공성 전극 제조

MC/CFD 다차원 해석 >기공도제어
• 순환형 연료공급장비 설계 및 제작

• 불순물 제거 및 억제기술 개발

• 가스의 확산제거 해석기술

• MC/CFD 다차원 해석->기공도제어

• 삼상계면 형성의 최적 제어기술

애노드 평가 기술

• 애노드 전극의 전해질증발문제 해결

• 산화물코팅을 통한 젖음성 향상

• 고온 전기화학특성 평가• 고온 전기화학특성 평가

열관리 기술
석탄 특성 평가
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• 다공성 전극의 열전달 특성해석

• 용융탄산염의 고온유지(열교환기)

• 유기적제어를 통한 운전최적화

• 미분탄의 탄종별 특성 분석

• 미분탄/용융탄산염 고온특성 최적화

• 석탄의 가스화 특성 해석

1. Energy 2) Basic Research Lab on DCFC1. Energy 2) Basic Research Lab on DCFC

Ce (blue) oxygen (green), nickel (red)

CeCl3 + citric acid + ethanol (50ml)

Sol-gel reaction for CeO2 coating
0.01mol%(b) (b1)0.01mol%

Ce (blue) oxygen (green), nickel (red)

Stirring_3000ppm (30min)

Ni foam dipped into sol solution 
for several time 0.1mol%(c) (f)(c1)0.1mol%

Dried at 60℃ for 15min

Calcination at 500℃ for 30minCalcination at 500 ℃ for 30min
In a Ar atomsphere
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1. Energy 2) Basic Research Lab on DCFC1. Energy 2) Basic Research Lab on DCFC

Contact angle: 101.5o

On Ni electrode

Contact angle: 29.5o

CeO2 0.01mol%

Case 1
Carbon black

Contact angle: 20.4o

CeO2 0.1mol%

Case 2 Carbon black

Case 3 CeO2
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1. Energy 2) Basic Research Lab on DCFC1. Energy 2) Basic Research Lab on DCFC
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Case 3
- maximizing triple-phase boundary

- enhancing electrode wetness

Further study0
0 50 100 150 200 250

Current density (mA/cm2)

Further study

- Test for various coating materials

(better conductivity & stability)
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1. Energy 3) Energetic materials : Thermite1. Energy 3) Energetic materials : Thermite

Explosives

Al + MO > Al O + M

Rocket propellant

Al + MOx -> Al2O3 + M

O2-free welding
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1. Energy 3) Energetic materials : Thermite1. Energy 3) Energetic materials : Thermite

Al + MO > Al O + MAl + MOx -> Al2O3 + M
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1. Energy 3) Energetic materials : Thermite1. Energy 3) Energetic materials : Thermite

Ref [11]: 73.3%  of 
Al volume melts 

at bulk Tm
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500 550 600 650 700 750

Temperature, o C

b) HR-TEM
c) DSC

1. Energy 3) Energetic materials : Thermite1. Energy 3) Energetic materials : Thermite
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1. Energy 3) Energetic materials : Thermite1. Energy 3) Energetic materials : Thermite
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2. Environment 1) de-NOx catalysts2. Environment 1) de NOx catalysts

Aerosol-gel process to produce Pt/MOx Pt/SiO2
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2. Environment 1) de-NOx catalysts2. Environment 1) de NOx catalysts

HydroCarbon-based Selective Catalytic Reduction : 
aNO+bC3H6+cO2  dN2+eNO2+fN2O+gH2O+hCO23 6 2 2 2 2 g 2 2
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2. Environment 1-1) Colloidal system2. Environment 1 1) Colloidal system

Experimental parameters
Interaction between 

Particle growthExperimental parameters
colloidal particles

 Solution (pH, T, I)  DLVO theory  Suspension stability
Charged functional

group
Helmholtz plane

Charged functional
group

Helmholtz plane


Particle growth

 Surface charge state
- protonation Kp

- deprotonation Kd

 Electrostatic repulsion
 Van der Waals attraction
 Total interaction

 Particle collision kinetics

-OH2
+

-OH

O- C+ A-

C+

A-

Helmholtz plane

A-

A-

H2O-OH2
+

-OH

O- C+C+ A-A-

C+C+

A-A-

Helmholtz plane

A-A-

A-A-

H2O 20
b

tot

)xr2(

dx

Tk

E
expr2W









 











HMOMOH

MOHHMOH

Kd

2KpCuO
-O

-OH2
+

-OH

-OH2
+

A-

C A A

C+

A-

Shear
C+

C+
CuO

-O

-OH2
+

-OH

-OH2
+

A-A-

CC AA AA

C+C+

A-A-

Shear
C+C+

C+C+

repulsive

W3

Tk8

W

k
kk bdiff

diff 


 Microstructure control 0





d

Shear 
plane 0





d

Shear 
plane

repulsive

attractive

0 d s
x


0 d







0 d s
x


0 d







Page  18
BRL ON DCFC



2. Environment 1-1) Colloidal system2. Environment
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2. Environment 1-2) Link systematic parameters w/ suspension stability2. Environment 1 2) Link systematic parameters w/ suspension stability
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2. Environment 1-2) Link systematic parameters w/ suspension stability2. Environment 1 2) Link systematic parameters w/ suspension stability
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2. Environment 2) S effect on slagging2. Environment 2) S effect on slagging

Slagging & Fouling Trouble at Pulverized Coal Fired Boiler

R. Webber et. al., 2011

Ash deposition at furnace wall, 
super heater & reheater tube surface

• Degrade heat transfer efficiency
• Boiler damage by fallen clinker (5 tons)
• Blockage at the bottom of PC boiler• Blockage at the bottom of PC boiler

Need to understand the mechanism of 
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the slagging & fouling & clinker formation



2. Environment 2) S effect on slagging2. Environment 2) S effect on slagging

A
s

Species
Melting 

Point (oC)
Element Si Fe Al Ca K Na

At i % 48 29 5 6 11 4 3 2 2 0
ICP-AESsh com

pos

Fe2O3 1566

SiO2 1600

CaSO4 1460

MgO 2852

Atomic % 48 29 5.6 11.4 3.2 2.0

Phase Fe2O3 Al2O3 CaSO4

% Mol 58.4 8.6 33
XRD

1200°C

ition

MgO 2852

Al2O3 2072

CaO 2572

Major species : glassy SiO2 + Fe2O3+ CaSO4

Minor species : Al2O3 + Alkali metal compounds

1200 C

No. Crystalline
Phase

JCPDS
No.

1 CaSO4 86-2270
1

at 600 oC
r2 = 0.91 Peak observation w/ ramping T

CaSO4, Fe2O3, SiO2

2 Al2O3 88-0826

3 Fe2O3 84-0309

4 SiO2 87-2096

5 Ca2Fe2O5 18-0286en
si

ty
 (

cp
s)

2

3

4

5

Ca2Fe2O5, CaFe3O5,

CaFe4O7, Fe2SiO4,
6 Fe3O4 82-1533

7 Fe2SiO4 [2] 80-1625

8 Fe2SiO4 [1] 87-0315

In
te

6

7

8

9

4 2 4

Fe3O4 at 1100-1150oC
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9 CaFe3O5 31-0274

20 30 40 50 60 70
2 (degree)

9
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2. Environment 2) S effect on slagging2. Environment 2) S effect on slagging

B l R ti ZHT-XRD Indicates Below Reaction Zone: 
< 800°C

HT XRD Indicates
Zone A

40
Zone A Zone B Zone C

C                Reaction Zone: 800~1150°C                
CaSO4 reacts w/ Fe2O3 to form 
various forms of Calcium ferrite 
formation

Zone B30

CaSO4
Fe2O3
Fe3O4
CaFe4O7
CaFe3O5%

)

o at o

Melting Zone: > 1200°C

C f
Zone C

20

CaFe3O5
Ca2Fe2O5

m
o

l (
%

Calcium ferrite begins to melt
Zone C

0

10

Potential Reaction pathway
1. CaSO4 + 3Fe2O3  CaF3O5 + Fe3O4 + SO2 + O2

2. CaSO4 + 2Fe2O3  CaFe4O7 + SO2 + 0.5O2

3 2CaSO +Fe O  Ca Fe O +SO +2O

0

600 700 800 900 1000 1100 1200 1300

Temperature (oC)
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3. 2CaSO4+Fe2O3 Ca2Fe2O5+SO2+2O2

4. 2CaSO4+4Fe2O3 Ca2Fe2O5+2Fe3O4+SO2+2.5O2



2. Environment 2-1) Percolation theory, EMT vs LBM2. Environment 2 1) Percolation theory, EMT vs LBM

LBM

EMT
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2. Environment 3) de-SOx catalysts2. Environment 3) de SOx catalysts

Indirect  sulfation Direct  sulfation
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Flu gas condition
ㆍT : 800∼1500oC
ㆍCO2 : 23%

• TGA indicates that T > 800oC to decompose CaCO3

• XRD indicates that below 800oC, Direct sulfation occurs
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ㆍO2 : 5~6%
ㆍN2 : 70~75% BRL ON DCFC

• above 900oC, Indirect sulfation occurs w/ CaSO3 formation



2. Environment 3) de-SOx catalysts2. Environment 3) de SOx catalysts
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When T > 1000oC,

de SOx (indirect sulfation) efficiency degraded due to sintering & decomposition of CaSO
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de-SOx (indirect sulfation) efficiency degraded due to sintering & decomposition of CaSO4

2. Environment 4) C-free H2 production2. Environment 4) C free H2 production

Concept of two-step thermo-chemical cycle
• Easy scale-up like CFB + CYRO

O2/1ZnZnO 

• Low-temperature splitting is possible

• Various MOx can be used

Quenching gas
2O2/1ZnZnO 

Zn nanoparticles
Generation Furnace
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A
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Flow 
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Filter
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22 HZnOOHZn 

222 H)1(COZnOOH)1(COZn 

a) 100nm b) 100nmc)
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2. Environment 4) C-free H2 production2. Environment 4) C free H2 production
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25cm : nucleation & condensation

• 55cm : nucleation & coagulation

• 85cm : sintered hexahedral crystal
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3. Instrumentation 1) SPMS3. Instrumentation 1) SPMS
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wavelengths, laser power 
intensity: 1.71010 W/cm2 (~100 
mJ/pulse)Distance from barrel inlet (cm)
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3. Instrumentation 2) T-jump MS3. Instrumentation 2) T jump MS
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