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SummaryOf on-g'oi':hgt _res__-e,ar_ch'es.: what & how

» One-step continuous synthesis
 Flame, Aerosol-gel, Spray pyrolysis ‘ » de-NOx & de-SOx catalysts
» Under control of microstructure, g Material S + Catalytic regneration of DPF

size & composition | Synthesis \ « Sulfur effect on slagging

* Pt/C & PtRu/C Inks ENERGY: = = ENVIROMENT : % «Thermochemical cycle for H2
A CATALYSTS

A

. PEMFC k \
Wet-surface electrode DCEC . POWER PLANT
* Energetic combustion THERMITES HYDROGEN
AEROSOL-BASED

APPLICATIONS

_ Online & Offline|

‘ Numerical
” Analysis
* CFD : Particle-laden flow

STRUMENTATION : i -
« CED : Atomization \ S Slr_1rg.le particle mass tspect:o.
« MC : aggregation & microstructure\\ T-JUMP MS -jJump mass spectrometry

« Insitu thermal analyser (hot stage)

* LB : heterogenueous multi-component . ] ;
* Physicochemical & electrochemical

structure ——
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» Key factors for commercialization

- long-term reliability
- a minimal use of Pt

= Potential Solutions
- make smaller Pt particles
- enhance Pt surface dispersion

- develop more cost-effective method

- find less-expensive catalysts (Ru, Co, Y)
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1) Pt catalyzed fuel electrode of PEMFC
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1) Pt catalyzed fuel electrode of PEMFC
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1)-Pt catalyzed fuel electrode of PEMF
Ru+H,0 >Ru-OH,, +H" +e”

C

We can get electricity
directly from coal

Carbon in _
Anode  :C + 2C0O;2 — 3CO, + 4e Flectrical
} : g # pﬂ\\'\;' out
Cathode : 0O, + 2CO, + 4e — 2CO5* +
Net reaction : C + O, — CO,
, CO»
* no need of CO, separation out
* Highest theoretical electrochemical efficiency
« easy retrofitting to MCFC or SOFC | | <mmAr
« still in an idea-developing stage Anode: Cathode:
.. . . C oxidized O; reduced
« suffer from limitted triple-phase interfaces | o
ir
* unknown thermal stabilities of various coals ] - out
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2) Basic Research Lab on DCFC
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Sol-gel reaction for CeO2 coating

l— Ni foam dipped into sol solution i
for several time

Calcination at 500 C for 30min
In a Ar atomsphere
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2) Basic Research Lab on DCFC

Ce (blue) oxygen (green), nickel (red)

1%
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Contact angle: 101.5°
On Ni electrode

Contact angle: 29.5°
Ce0O, 0.01mol%

)

Contact angle: 20.4°
CeO, 0.1mol%

D
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- 2)Basic _Re-éearch Lab on DCFC

_~ Anode
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Case 1l

Improved max power density by

- maximizing triple-phase boundary

- enhancing electrode wetness

Further study

- Test for various coating materials
(better conductivity & stability)
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~ 3) Energetic materials : Thermite
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3),Energ_e'tic materials ;: Thermite

Growth of
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3) Energetic materials : Thermite
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2. Environment

Aerosol-gel process to

1) de-NOx catalysts

produce Pt/MOx

Si—OR +HOH 2%, 5j — OH + ROH
Si—OH+Si—0OH water condensation Si—O-Si+HOH
Si—OH+Si—0OR alcohol condensation Si—0-Si+ROH
20 sl
i Drying Process ;  Heating Process e
:, (25°C) ; (400°C) :, Filter (heated 80°C) Pt/A|203
X
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Silica Polymerization Droplet Create Lock Nanoporous

Monomers Microstructure Microstructure Silica Particle
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2.Envirohment; = -'.1-)de—N'OxcataIysts

HydroCarbon-based Selective Catalytic Reduction :
aNO+bC;Hg+cO, — dN,+eNO,+fN,0+gH,0+hCO,
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Charged functional

NLel a ONn petween

collolaal particies

—1-1) Colloidal system

group = DLVO theory = Suspension stability
Helmholtz plane . .
— ~ = Electrostatic repulsion W = 2r["exp Eo dx
-OH2+ € 8‘3—’ 42 = Van der Waals attraction L k,T ) (2r +x)?
OH |11 = Total interaction _ . L
o> @ " % = Particle collision kinetics
w ===
T | © e K 8T
FOH ‘|| @ @ T W 3nW
'OH2+ : shear [ repulsive |
vl T Iae:er C = Microstructure control
4= Vo P —
T__$l3 [ mlﬂ“’llk.l.n.:!% attractive
1 R—-VYd
|
o ;
S
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2. Environment -

Frame001 | 25 May 2008
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-'1-1) Colloidal system
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1+ Kaa(A—)10—0.434ApH B 1+ Kca(c+)100.434ApH

}exp(—mx) ]
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2. Environment =2 bk éyétematic parameters w/ suspension stability
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2. Environment — -2) S effect on slagging

Slagging & Fouling Trouble at Pulverized Coal Fired Boiler

R. Webber et. al., 2011 Gonvective},ﬁeat exchange surface for
superheating and reheating steam

Convective

Combustion surface
chamber lined for water
with tubes for

th | W heating
raising steam H

Ash deposition at furnace wall, ‘
super heater & reheater tube surface

To air preheater

ESP and stack
Bumers 3 » Degrade heat transfer efficiency
, + Boiler damage by fallen clinker (5 tons)
. 1 E?EEIZ‘EEE%&%QZD;:::B) | + Blockage at the bottom of PC boiler |
Fouling 3 Burner (eyebrows)
D Slagging 4 Wall slag

* g l[:’)I'n.'isicrr(\bwrglI slag (\Svhere approriate)
aten (birdnesting .
Ash 7 Convection bank (bonded deposits) Need to understand the mechanism of

8E i bonded d i 0 0 0 .
e aosts) the slagging & fouling & clinker formation

9 Air heater (gas inlet fouling)
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2. Environment =~ - 2)Seffect on slagging

-- ICP-AES

>
78 F9203 1566 Atomic % 48 1.4 .0
Q
3 2 2%3 2™3 4 XRD
CaSO, 1460 % Mol 58.4
2% MgOo 2852
=L A0, 2072 Major species : glassy SiO, + Fe,O;+ CaSO,
Ca0 2572 Minor species : Al,O, + Alkali metal compounds
‘ ‘ " atbooc Crystalline JCPDS . .
12 =091 “ No. Peak observation w/ ramping T
il ) 1 CaS04 86-2270 \ CaSO,, Fe,0,, SiO,
— 2 AI203 88-0826
L 2 ‘
2 B 3 3 Fe203 84-0309
f;, L 4 4 Si02 87-2096 7'\ CagFe 05, CaFeyOs,
gl . 5 5  Ca2Fe205  18-0286 CaFe,07, Fe,SiO,,
£
£ 6 =
: : . | Fe,0, at 1100-1150°C
| l 7  Fe2Si04[2]  80-1625
a8 8  Fe2SiO4[1] 87-0315
9 9  CaFe305  31-0274
20 30 40 50 60 70
20 (degree) BRL ON DCFC
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2. Environment = 2 S effect on slagging

HT-XRD Indicates ancy Below Reaction Zone:

< 800°C

Zone A Zone B Zone C
40— P +—————————————————p+——>
o Caso4 Reaction Zone: 800~1150°C
—=—Fe203
30 _ ——Fe304 . CaS0, reacts w/ Fe,O; to form
. —=—CaFedO7 various forms of Calcium ferrite
S —=— CaFe305 formation
S o~ —e— Ca2Fe205
g€ 20 - ,
> Melting Zone: > 1200°C
10 . Calcium ferrite begins to melt
0 L | | | | | | 7\
600 700 800 900 1000 1100 1200 1300 Potential Reaction pathway
o 1. CaSO, + 3Fe,0; —» CaF;0;4 + Fe;O, + SO, + O,
Temperature ("C) 2. CaS0, + 2Fe,0; — CaFe,0, + SO, + 0.50,

3. 2CaS0O,+Fe,0;— Ca,Fe,05+S0,+20,
4.2CaS0O,+4Fe,0;— Ca,Fe,05+2Fe;0,+S0,+2.50,

Page = 24




2. Environment

(b} Intermediate Medium

$e=Lsand t=1

Ny
% (d} Intermediate Medium

tion equation

j‘/ U N~ ] @ Asymmetic Medium
O Pen=Pri1 =41 = pyf
&j 6 = o1 - 41

Note implied ¢.=1

j UOQ\\\_/ (a) Asymmetric Medium Conductor Host: ¢ =0 ol
A= ap(1 =32 =gy(1 — )1 =L e ol

Q O =ap(1 —1 Y™ Wk - "
/\ Mote implied =1 w' b N / p _ \

* a0l =11 Y =op(1 = 1 YU L) i -

¥ P =Pyl —$iC) = prll — g )P 061
=pal1 — #ldcymte
Note: Equation has correct diute limit and t=

_ 2-1) Percolation theory, EMT vs LBM

W LBM

Macroscopic

Conducior Host: op=0 \

-

-5
u [
w o \
T AZN

i

o %0 oz o4 Averaging }lesps_n;ﬂ])lc
=op 1 =y ] \ AZnNE
Mote: Equation has correct dilute limit and the mathematical form of the percola: Ay LT S \_’
tion equation. raiva o SR Ensemble
LEBM BT < [<] Averaging
(6) Bymmetric Medium (L=Ly) e ] {‘ ] /
- —t= =
&y =0 o =ap[1 ~ (32)] = o1 = {1 = L)) Rl B {
" -
fe=1-Lyand 1=1 .. . .
L randt EMT Simolification . i ,/
P1=0: Pm=Prl1—3¢) =py(1 ~$iLy) ! \ Microscopic |

Insulator Host: py=

=

Insulator Host: gy =
1= )M

100
\ertical Isothermd Furnaceat 700~1000 oC
80 - O O (@] O 410* - f &?6384
OXY-FUEL G0
- CaCoOgj COMBUSTION . : &aso
QL 601 Directo o0 oo 310 - A e | . P ¢
= . il I . ﬂw s ,/10000C™
~ sulfation . ;
8 Indirect £ Indirect:
g . 4
o4 @ stifation gao 2l ', 9000C,’
CaO ﬁ IO
20 1 4 A C ¢ o . A
L E - i 110" - ¢ NBJLW 1w o ;" 8000C,
// Flu gas ‘condition N T !
AIR COMBUSTION
0 —— YN SRR SN .-
700 750 800 850 900 950 1000 20 30 40 50 60 0 80 <--790
T (OC) Ande (2 Theta)

Flu gas condition
« T:800~1500°C
- CO,:23%

+ O, :5~6%

* N, : 70~75%
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* TGA indicates that T > 800°C to decompose CaCO,

* XRD indicates that below 800°C, Direct sulfation occurs

» above 900°C, Indirect sulfation occurs w/ C%ﬁ'\% Br\lmﬁ)tl&:} C




2.-Environment; = == — 3)de-SOx catalysts

DeSOx Parfomance & Isothema at Vertical Fumence (g

- | B SI7o > Tiitm

1000°C

Time(nin)

CaCO, —=2%C ,Ca0+S0, —=%C ,CaS0, +1/20, —=%C , CasO, —=22C ,Ca0

When T > 1000°C,

de-SOx (indirect sulfation) efficiency degraded due to sintering & decomposition of CaSO,

BRL ON DCFC
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2.-Environment; = - == 4) C-free H, production

Concept of two-step thermo-chemical cycle _
* Easy scale-up like CFB + CYRO

» Low-temperature splitting is possible

T=2300K |\
Qsoiar } ! * Various MOx can be used
Concentrated
Solar Ene
roy Zno —> Zn +1/ 202 Quenching gas Quenching length, xq
B—®— Carrier pas
Zno In+%0, ] =5
2300K
Qreracﬂalion @ 238K e Filter
== ;l::;' Zn nanoparticles
Generation Furnace
A
Wee

'.éO,_@ZQSK‘ Zn @ 298K
Fuel | HO —
Cell
Q

A Hydrolyser hydrolyser

Qrc. Quench Quuencn - - ; -
14
p
b) /

a)

M} [ Zn+H,0 > ZnO+H,

Zn+pCO, +(1-p)H,0 - ZnO+pCO+(1-B)H,

BRL ON DCFC
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2. Environment
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a

-

Temperature [K]

Temperature [K]

100nm

_'4)'C—-free H., production

Carrier

Quenching gas
e [—

Quenching length, x4

¥ quenching

z]
[r——

Zn nanoparticles
Generation Furnace

700 ! 2 b)
650 EAJ>1OZ#c(le 10
600 i Nucl . 2 z
550 _é_\ - 14 :8 g
500 NI 55
| 4 -6 = O
450 . o 2
| 4-8
400 Zn,sat . e
350 |.—=— Temp. w/ quenching N J-0
-8—Temp. w/o quenching
300 : P : : -12
15 20 25 30 35 40
X [cm]
q .
700 ¥ quenchlng
| | [ S —
650 ' : 0
600 1) > 10% #cct st >
'Nucl. ! "I =
550 ' ™ coagulation 4 _}8
500 |- : ! “o
S -6 T
450 |- s
400 | ! , N -8
350 L s -~ i 10
—e—Temp. w/ quenching
300 I P L I 12
20 30 40 50 60 70 80 90 100
><q [cm]

Filter

J quenching

700 T T 2
- T
650 1 i 10
|
600 > 102 # cclist 2
' li1 - _
550 14 8
500 |- | 5 °g
" le —
450 |- | s
! 18
400 | TP, \
350 L—>—Temp. w/ quenching | 2== ] 210
- Temp. w/oiquenching |
300 L N L w 12
20 30 40 50 60 70
><q [em]

» 25cm : nucleation & condensation
* 55cm : nucleation & coagulation
» 85cm : sintered hexahedral crystal
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lon current signal
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Distance from barrel inlet (cm)

mJ/pulse)




3. Instrumentation

2) T-jump MS

—MCP Detector

—TOF Tube

— lon Extraction Assembly

— T-Jump Probe
 — observaton window

—Gate Valve

i~ Sample Loading Chaml

Electron Gun

Turba Purmp

Ionization Chamber — Feedthrough vy
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Time = 2,216 ms

MMW t=1.9ms
t=1.8ms
CHNO

23 4 t=1.7ms

GLW_,UuM - e
L} t=1.6ms

N Pt tbemee et

t=1.5ms

" A e,
CHNN t=1.4ms

2 s 2 o

M . - PP

C HAN/CHQNZJ'CNO t=1.3ms
+ .
) ,.;\./ CH3N202 C:H3N4O:2 t=1.2ms
NO
- 2 n t=1.1ms
j ) t=1.0ms
t=0.9ms
t=0.8ms
t=0.7ms
60 80 100 120 140
miz
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